JEOLLANAM-DO PROVINCE, South Korea, Dec. 18, 2025 /PRNewswire/ — Single-phase power factor correction (PFC) circuits—a kind of front-end AC/DC converters—are ubiquitousJEOLLANAM-DO PROVINCE, South Korea, Dec. 18, 2025 /PRNewswire/ — Single-phase power factor correction (PFC) circuits—a kind of front-end AC/DC converters—are ubiquitous

Chonnam National University Researchers Propose Innovative Voltage-Loop Control for Power Factor Correction

JEOLLANAM-DO PROVINCE, South Korea, Dec. 18, 2025 /PRNewswire/ — Single-phase power factor correction (PFC) circuits—a kind of front-end AC/DC converters—are ubiquitous in a variety of consumer electronic devices, including laptop adapters, LED driver power supplies, and portable chargers. They enhance the current quality drawn from the source, delivering stable DC voltage with high efficiency.

However, current sensors in traditional boost PFC converters introduce issues such as noise susceptibility, signal delays, increased hardware complexity, and potential sensor failures that can degrade system reliability and lifespan. By eliminating current sensors, the proposed sensorless strategy reduces these risks, improves noise immunity, and decreases hardware failure points, leading to enhanced reliability and potentially longer-lasting power adapters and consumer electronics.

In a remarkable breakthrough achievement, a team of researchers from South Korea and China, led by Sung-Jun Park, a Professor from the Department of Electrical Engineering at Chonnam National University, has successfully demonstrated a new control method that eliminates the need for a current sensor. Their findings were made available online and have been published in the journal IEEE Transactions on Consumer Electronics on 30 September 2025.

In this study, the team proposes a simple and reliable single voltage loop current sensorless PFC control strategy. They derive the expression for the duty cycle—which consists of a feedforward component and a control component—by leveraging the fundamental equation of inductor voltage. Notably, delay compensation helps mitigate the effect of phase delay on input current distortion in the proposed control strategy.

“In this way, we specifically identified and solved a common issue in digital control systems: phase delay caused by signal processing. This delay distorts the input current. Our built-in compensation technique effectively counteracts this, which is a key reason for our method’s high-power quality,” remarks Prof. Park.

The novel technology eliminates complex observers and mathematical models, resulting in lower component cost, simpler circuit design, and a smaller size. This reduces maintenance by minimizing parts prone to wear or recalibration, enhancing long-term efficiency compared to sensor-based solutions. Additionally, its low sensitivity to circuit parameter variations ensures reliability and suitability for mass production, allowing manufacturers to easily integrate the control strategy into existing production lines using standard digital signal processors without major redesign or added inventory.

This technology suits AC/DC power supplies in consumer electronics, validated on a 1.3 kW prototype achieving near-unity power factor (up to 0.9998) and low total harmonic distortion (THD) (2.12% at full load)—matching or exceeding sensor-based methods. By eliminating sensors and components, it enables smaller, cost-effective designs. Prof. Park explains, “By simplifying the power circuitry and reducing component count, chargers and power adapters for everything from laptops to kitchen appliances can become more compact and portable. As millions of electronic devices draw cleaner, sinusoidal current—with high power factor and low THD—from the wall socket, it reduces stress on the power grid. Lastly, cheaper and more reliable power supplies could mean lower upfront costs for consumers, furthering electric vehicles and renewable energy systems.”

Reference
Title of original paper: A Simple Current Sensorless Control Method for Boost PFC
Journal: IEEE Transactions on Consumer Electronics
DOI: 10.1109/TCE.2025.3615203

About the institute
https://global.jnu.ac.kr/jnumain_en.aspx

Media Contact:
Minji Son
82-62-530-5191
[email protected]

Cision View original content to download multimedia:https://www.prnewswire.com/news-releases/chonnam-national-university-researchers-propose-innovative-voltage-loop-control-for-power-factor-correction-302646127.html

SOURCE Chonnam National University

Market Opportunity
LoopNetwork Logo
LoopNetwork Price(LOOP)
$0.01024
$0.01024$0.01024
+0.39%
USD
LoopNetwork (LOOP) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Botanix launches stBTC to deliver Bitcoin-native yield

Botanix launches stBTC to deliver Bitcoin-native yield

The post Botanix launches stBTC to deliver Bitcoin-native yield appeared on BitcoinEthereumNews.com. Botanix Labs has launched stBTC, a liquid staking token designed to turn Bitcoin into a yield-bearing asset by redistributing network gas fees directly to users. The protocol will begin yield accrual later this week, with its Genesis Vault scheduled to open on Sept. 25, capped at 50 BTC. The initiative marks one of the first attempts to generate Bitcoin-native yield without relying on inflationary token models or centralized custodians. stBTC works by allowing users to deposit Bitcoin into Botanix’s permissionless smart contract, receiving stBTC tokens that represent their share of the staking vault. As transactions occur, 50% of Botanix network gas fees, paid in BTC, flow back to stBTC holders. Over time, the value of stBTC increases relative to BTC, enabling users to redeem their original deposit plus yield. Botanix estimates early returns could reach 20–50% annually before stabilizing around 6–8%, a level similar to Ethereum staking but fully denominated in Bitcoin. Botanix says that security audits have been completed by Spearbit and Sigma Prime, and the protocol is built on the EIP-4626 vault standard, which also underpins Ethereum-based staking products. The company’s Spiderchain architecture, operated by 16 independent entities including Galaxy, Alchemy, and Fireblocks, secures the network. If adoption grows, Botanix argues the system could make Bitcoin a productive, composable asset for decentralized finance, while reinforcing network consensus. This is a developing story. This article was generated with the assistance of AI and reviewed by editor Jeffrey Albus before publication. Get the news in your inbox. Explore Blockworks newsletters: Source: https://blockworks.co/news/botanix-launches-stbtc
Share
BitcoinEthereumNews2025/09/18 02:37
Bitcoin ETFs Surge with 20,685 BTC Inflows, Marking Strongest Week

Bitcoin ETFs Surge with 20,685 BTC Inflows, Marking Strongest Week

TLDR Bitcoin ETFs recorded their strongest weekly inflows since July, reaching 20,685 BTC. U.S. Bitcoin ETFs contributed nearly 97% of the total inflows last week. The surge in Bitcoin ETF inflows pushed holdings to a new high of 1.32 million BTC. Fidelity’s FBTC product accounted for 36% of the total inflows, marking an 18-month high. [...] The post Bitcoin ETFs Surge with 20,685 BTC Inflows, Marking Strongest Week appeared first on CoinCentral.
Share
Coincentral2025/09/18 02:30
Nvidia acquired Groq's assets for $20 billion, but officially stated that it did not acquire the entire company.

Nvidia acquired Groq's assets for $20 billion, but officially stated that it did not acquire the entire company.

PANews reported on December 25th that, according to CNBC, Nvidia has agreed to acquire all assets of AI chip startup Groq (excluding its GroqCloud business) for
Share
PANews2025/12/25 08:25