Author: Haotian After listening to FLock's 2025 annual report, I was particularly intrigued by their mention of launching a large AI model using Laupac . What? Launchpad again? How do you issue assets for a large model? Actually, it's easy to understand; just make an analogy: Launchpad, an AI agent like Virtuals Protocol, is application-layer driven. It uses token incentives to incentivize agents by issuing assets, helping them evolve from "being able to chat" to "being able to make payments," and ultimately to "being able to trade autonomously" and provide complex services. FLock's AI Model Launchpad is driven by the infrastructure layer and distributes assets to large trained models , namely a large number of vertical scenario models, such as medical diagnosis, legal documents, financial risk control, and supply chain optimization. While the training cost of these vertical models is relatively controllable, their commercialization path is extremely narrow. They either sell themselves to large companies or open-source them out of passion, with very few sustainable ways to monetize them. FLock intends to restructure this value chain with Tokenomics, issuing assets to the finely tuned large model, thereby giving data providers, computing power nodes, validators, and others who contribute to the model training a long-term possibility of obtaining revenue. When the model is invoked and generates income, it can be continuously distributed according to the contribution ratio. Creating a launchpad for a large model might sound novel at first, but it's essentially using financial means to drive product development. Once a model is assetized, trainers have the motivation to continuously optimize it, and once the revenue can be continuously distributed, the ecosystem will have the ability to generate its own revenue. The benefits of doing this are undeniable. For example, the recently popular nof1 large model trading competition only accepts general large models for participation, and there are no large models with fine-tuning for participation. The reason is the lack of an incentive mechanism. Excellent specialized models usually tend to make money quietly and cannot be exposed. However, if they have assets, they are of great significance. Such large model Arena competitions have become a stage for publicly showing off one's strength, and the competitive performance will directly affect the performance of large model assets. The potential for imagination has been opened up. Of course, FLock has only proposed a direction so far and has not yet been truly implemented. The differences and similarities between the specific model for issuing assets and the agent-based asset issuance model are still unknown. However, one thing is certain: how to ensure that the model calls for issuing assets are based on real demand rather than inflated volume, and how to effectively ensure Product-Market Fit (PMF) in vertical scenarios are all problems. It is safe to say that the wave of token issuance by Agent applications will also encounter many of these issues. I'm really looking forward to seeing what different ways there will be to create a Launchpad for the Model.Author: Haotian After listening to FLock's 2025 annual report, I was particularly intrigued by their mention of launching a large AI model using Laupac . What? Launchpad again? How do you issue assets for a large model? Actually, it's easy to understand; just make an analogy: Launchpad, an AI agent like Virtuals Protocol, is application-layer driven. It uses token incentives to incentivize agents by issuing assets, helping them evolve from "being able to chat" to "being able to make payments," and ultimately to "being able to trade autonomously" and provide complex services. FLock's AI Model Launchpad is driven by the infrastructure layer and distributes assets to large trained models , namely a large number of vertical scenario models, such as medical diagnosis, legal documents, financial risk control, and supply chain optimization. While the training cost of these vertical models is relatively controllable, their commercialization path is extremely narrow. They either sell themselves to large companies or open-source them out of passion, with very few sustainable ways to monetize them. FLock intends to restructure this value chain with Tokenomics, issuing assets to the finely tuned large model, thereby giving data providers, computing power nodes, validators, and others who contribute to the model training a long-term possibility of obtaining revenue. When the model is invoked and generates income, it can be continuously distributed according to the contribution ratio. Creating a launchpad for a large model might sound novel at first, but it's essentially using financial means to drive product development. Once a model is assetized, trainers have the motivation to continuously optimize it, and once the revenue can be continuously distributed, the ecosystem will have the ability to generate its own revenue. The benefits of doing this are undeniable. For example, the recently popular nof1 large model trading competition only accepts general large models for participation, and there are no large models with fine-tuning for participation. The reason is the lack of an incentive mechanism. Excellent specialized models usually tend to make money quietly and cannot be exposed. However, if they have assets, they are of great significance. Such large model Arena competitions have become a stage for publicly showing off one's strength, and the competitive performance will directly affect the performance of large model assets. The potential for imagination has been opened up. Of course, FLock has only proposed a direction so far and has not yet been truly implemented. The differences and similarities between the specific model for issuing assets and the agent-based asset issuance model are still unknown. However, one thing is certain: how to ensure that the model calls for issuing assets are based on real demand rather than inflated volume, and how to effectively ensure Product-Market Fit (PMF) in vertical scenarios are all problems. It is safe to say that the wave of token issuance by Agent applications will also encounter many of these issues. I'm really looking forward to seeing what different ways there will be to create a Launchpad for the Model.

A brief review of FLock's AI launchpad: Is the path of "issuing assets" to large models viable?

2025/11/21 17:59
3 min read

Author: Haotian

After listening to FLock's 2025 annual report, I was particularly intrigued by their mention of launching a large AI model using Laupac .

What? Launchpad again? How do you issue assets for a large model? Actually, it's easy to understand; just make an analogy:

Launchpad, an AI agent like Virtuals Protocol, is application-layer driven. It uses token incentives to incentivize agents by issuing assets, helping them evolve from "being able to chat" to "being able to make payments," and ultimately to "being able to trade autonomously" and provide complex services.

FLock's AI Model Launchpad is driven by the infrastructure layer and distributes assets to large trained models , namely a large number of vertical scenario models, such as medical diagnosis, legal documents, financial risk control, and supply chain optimization.

While the training cost of these vertical models is relatively controllable, their commercialization path is extremely narrow. They either sell themselves to large companies or open-source them out of passion, with very few sustainable ways to monetize them.

FLock intends to restructure this value chain with Tokenomics, issuing assets to the finely tuned large model, thereby giving data providers, computing power nodes, validators, and others who contribute to the model training a long-term possibility of obtaining revenue. When the model is invoked and generates income, it can be continuously distributed according to the contribution ratio.

Creating a launchpad for a large model might sound novel at first, but it's essentially using financial means to drive product development.

Once a model is assetized, trainers have the motivation to continuously optimize it, and once the revenue can be continuously distributed, the ecosystem will have the ability to generate its own revenue.

The benefits of doing this are undeniable. For example, the recently popular nof1 large model trading competition only accepts general large models for participation, and there are no large models with fine-tuning for participation. The reason is the lack of an incentive mechanism. Excellent specialized models usually tend to make money quietly and cannot be exposed. However, if they have assets, they are of great significance. Such large model Arena competitions have become a stage for publicly showing off one's strength, and the competitive performance will directly affect the performance of large model assets. The potential for imagination has been opened up.

Of course, FLock has only proposed a direction so far and has not yet been truly implemented. The differences and similarities between the specific model for issuing assets and the agent-based asset issuance model are still unknown.

However, one thing is certain: how to ensure that the model calls for issuing assets are based on real demand rather than inflated volume, and how to effectively ensure Product-Market Fit (PMF) in vertical scenarios are all problems. It is safe to say that the wave of token issuance by Agent applications will also encounter many of these issues.

I'm really looking forward to seeing what different ways there will be to create a Launchpad for the Model.

Market Opportunity
FLock.io Logo
FLock.io Price(FLOCK)
$0.06247
$0.06247$0.06247
-2.43%
USD
FLock.io (FLOCK) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Fed Decides On Interest Rates Today—Here’s What To Watch For

Fed Decides On Interest Rates Today—Here’s What To Watch For

The post Fed Decides On Interest Rates Today—Here’s What To Watch For appeared on BitcoinEthereumNews.com. Topline The Federal Reserve on Wednesday will conclude a two-day policymaking meeting and release a decision on whether to lower interest rates—following months of pressure and criticism from President Donald Trump—and potentially signal whether additional cuts are on the way. President Donald Trump has urged the central bank to “CUT INTEREST RATES, NOW, AND BIGGER” than they might plan to. Getty Images Key Facts The central bank is poised to cut interest rates by at least a quarter-point, down from the 4.25% to 4.5% range where they have been held since December to between 4% and 4.25%, as Wall Street has placed 100% odds of a rate cut, according to CME’s FedWatch, with higher odds (94%) on a quarter-point cut than a half-point (6%) reduction. Fed governors Christopher Waller and Michelle Bowman, both Trump appointees, voted in July for a quarter-point reduction to rates, and they may dissent again in favor of a large cut alongside Stephen Miran, Trump’s Council of Economic Advisers’ chair, who was sworn in at the meeting’s start on Tuesday. It’s unclear whether other policymakers, including Kansas City Fed President Jeffrey Schmid and St. Louis Fed President Alberto Musalem, will favor larger cuts or opt for no reduction. Fed Chair Jerome Powell said in his Jackson Hole, Wyoming, address last month the central bank would likely consider a looser monetary policy, noting the “shifting balance of risks” on the U.S. economy “may warrant adjusting our policy stance.” David Mericle, an economist for Goldman Sachs, wrote in a note the “key question” for the Fed’s meeting is whether policymakers signal “this is likely the first in a series of consecutive cuts” as the central bank is anticipated to “acknowledge the softening in the labor market,” though they may not “nod to an October cut.” Mericle said he…
Share
BitcoinEthereumNews2025/09/18 00:23
While Shiba Inu and Turbo Chase Price, 63% APY Staking Puts APEMARS at the Forefront of the Best Meme Coin Presale 2026 – Stage 6 Ends in 3 Days!

While Shiba Inu and Turbo Chase Price, 63% APY Staking Puts APEMARS at the Forefront of the Best Meme Coin Presale 2026 – Stage 6 Ends in 3 Days!

What if your meme coin investment could generate passive income without selling a single token? Shiba Inu climbed 4.97% as 207 billion tokens left exchanges. Turbo
Share
Coinstats2026/02/04 03:15
SUI Price Is Down 80%: Price Nears Level Bulls Cannot Afford to Lose

SUI Price Is Down 80%: Price Nears Level Bulls Cannot Afford to Lose

SUI price has quietly slipped into a zone that usually decides everything. Charts show an 80% drop from the peak, yet the market is no longer moving fast. This
Share
Captainaltcoin2026/02/04 03:00