The post Ray’s Disaggregated Hybrid Parallelism Boosts Multimodal AI Training by 30% appeared on BitcoinEthereumNews.com. Iris Coleman Dec 10, 2025 01:06 Ray’s innovative disaggregated hybrid parallelism significantly enhances multimodal AI training efficiency, achieving up to 1.37x throughput improvement and overcoming memory challenges. In a significant advancement for artificial intelligence training, Ray has introduced a disaggregated hybrid parallelism approach that accelerates the training of multimodal AI models by 30%, according to Anyscale. This development addresses the complexities and computational challenges of training models that process diverse data types such as text, images, and audio. Challenges in Multimodal AI Training Multimodal AI models, unlike traditional homogeneous large language models, consist of specialized modules with varying computational and memory needs. Vision-Language Models (VLMs), for example, integrate a vision encoder with a large language model (LLM). This integration results in architectural complexities, particularly when dealing with high-resolution images and long sequences. Traditional techniques like tensor parallelism and DeepSpeed ZeRO3 often fall short, resulting in inefficiencies and potential out-of-memory errors. Ray’s Innovative Approach Ray’s disaggregated hybrid parallelism leverages the flexibility of its universal framework, enabling tailored parallelization strategies for each module within a multimodal model. By utilizing Ray’s actor-based architecture, developers can allocate resources independently, optimizing for the unique requirements of each module. This results in a more efficient orchestration of complex workloads, as demonstrated with the Qwen-VL 32B model. Benchmarking and Performance In tests conducted with the Qwen-VL 32B model, Ray’s approach showed up to a 1.37x improvement in throughput compared to traditional methods. The strategy combined sequence parallelism for the vision encoder with tensor parallelism for the LLM, effectively managing memory and computational demands across different modules. This method not only improved speed but also enabled the training of sequences up to 65,000 tokens long, surpassing the capabilities of DeepSpeed ZeRO3 which encountered memory issues at 16,000 tokens. Future Prospects… The post Ray’s Disaggregated Hybrid Parallelism Boosts Multimodal AI Training by 30% appeared on BitcoinEthereumNews.com. Iris Coleman Dec 10, 2025 01:06 Ray’s innovative disaggregated hybrid parallelism significantly enhances multimodal AI training efficiency, achieving up to 1.37x throughput improvement and overcoming memory challenges. In a significant advancement for artificial intelligence training, Ray has introduced a disaggregated hybrid parallelism approach that accelerates the training of multimodal AI models by 30%, according to Anyscale. This development addresses the complexities and computational challenges of training models that process diverse data types such as text, images, and audio. Challenges in Multimodal AI Training Multimodal AI models, unlike traditional homogeneous large language models, consist of specialized modules with varying computational and memory needs. Vision-Language Models (VLMs), for example, integrate a vision encoder with a large language model (LLM). This integration results in architectural complexities, particularly when dealing with high-resolution images and long sequences. Traditional techniques like tensor parallelism and DeepSpeed ZeRO3 often fall short, resulting in inefficiencies and potential out-of-memory errors. Ray’s Innovative Approach Ray’s disaggregated hybrid parallelism leverages the flexibility of its universal framework, enabling tailored parallelization strategies for each module within a multimodal model. By utilizing Ray’s actor-based architecture, developers can allocate resources independently, optimizing for the unique requirements of each module. This results in a more efficient orchestration of complex workloads, as demonstrated with the Qwen-VL 32B model. Benchmarking and Performance In tests conducted with the Qwen-VL 32B model, Ray’s approach showed up to a 1.37x improvement in throughput compared to traditional methods. The strategy combined sequence parallelism for the vision encoder with tensor parallelism for the LLM, effectively managing memory and computational demands across different modules. This method not only improved speed but also enabled the training of sequences up to 65,000 tokens long, surpassing the capabilities of DeepSpeed ZeRO3 which encountered memory issues at 16,000 tokens. Future Prospects…

Ray’s Disaggregated Hybrid Parallelism Boosts Multimodal AI Training by 30%

2025/12/11 02:08


Iris Coleman
Dec 10, 2025 01:06

Ray’s innovative disaggregated hybrid parallelism significantly enhances multimodal AI training efficiency, achieving up to 1.37x throughput improvement and overcoming memory challenges.

In a significant advancement for artificial intelligence training, Ray has introduced a disaggregated hybrid parallelism approach that accelerates the training of multimodal AI models by 30%, according to Anyscale. This development addresses the complexities and computational challenges of training models that process diverse data types such as text, images, and audio.

Challenges in Multimodal AI Training

Multimodal AI models, unlike traditional homogeneous large language models, consist of specialized modules with varying computational and memory needs. Vision-Language Models (VLMs), for example, integrate a vision encoder with a large language model (LLM). This integration results in architectural complexities, particularly when dealing with high-resolution images and long sequences. Traditional techniques like tensor parallelism and DeepSpeed ZeRO3 often fall short, resulting in inefficiencies and potential out-of-memory errors.

Ray’s Innovative Approach

Ray’s disaggregated hybrid parallelism leverages the flexibility of its universal framework, enabling tailored parallelization strategies for each module within a multimodal model. By utilizing Ray’s actor-based architecture, developers can allocate resources independently, optimizing for the unique requirements of each module. This results in a more efficient orchestration of complex workloads, as demonstrated with the Qwen-VL 32B model.

Benchmarking and Performance

In tests conducted with the Qwen-VL 32B model, Ray’s approach showed up to a 1.37x improvement in throughput compared to traditional methods. The strategy combined sequence parallelism for the vision encoder with tensor parallelism for the LLM, effectively managing memory and computational demands across different modules. This method not only improved speed but also enabled the training of sequences up to 65,000 tokens long, surpassing the capabilities of DeepSpeed ZeRO3 which encountered memory issues at 16,000 tokens.

Future Prospects

The success of Ray’s disaggregated hybrid parallelism in enhancing AI training efficiency paves the way for its application across larger GPU clusters and diverse hardware setups. Its ability to adapt to various multimodal architectures highlights its potential for broader implementation in AI development.

For those interested in exploring this innovative approach, Ray’s implementation is available for experimentation and feedback on their GitHub repository.

Image source: Shutterstock

Source: https://blockchain.news/news/rays-disaggregated-hybrid-parallelism-boosts-multimodal-ai-training

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Polygon Tops RWA Rankings With $1.1B in Tokenized Assets

Polygon Tops RWA Rankings With $1.1B in Tokenized Assets

The post Polygon Tops RWA Rankings With $1.1B in Tokenized Assets appeared on BitcoinEthereumNews.com. Key Notes A new report from Dune and RWA.xyz highlights Polygon’s role in the growing RWA sector. Polygon PoS currently holds $1.13 billion in RWA Total Value Locked (TVL) across 269 assets. The network holds a 62% market share of tokenized global bonds, driven by European money market funds. The Polygon POL $0.25 24h volatility: 1.4% Market cap: $2.64 B Vol. 24h: $106.17 M network is securing a significant position in the rapidly growing tokenization space, now holding over $1.13 billion in total value locked (TVL) from Real World Assets (RWAs). This development comes as the network continues to evolve, recently deploying its major “Rio” upgrade on the Amoy testnet to enhance future scaling capabilities. This information comes from a new joint report on the state of the RWA market published on Sept. 17 by blockchain analytics firm Dune and data platform RWA.xyz. The focus on RWAs is intensifying across the industry, coinciding with events like the ongoing Real-World Asset Summit in New York. Sandeep Nailwal, CEO of the Polygon Foundation, highlighted the findings via a post on X, noting that the TVL is spread across 269 assets and 2,900 holders on the Polygon PoS chain. The Dune and https://t.co/W6WSFlHoQF report on RWA is out and it shows that RWA is happening on Polygon. Here are a few highlights: – Leading in Global Bonds: Polygon holds 62% share of tokenized global bonds (driven by Spiko’s euro MMF and Cashlink euro issues) – Spiko U.S.… — Sandeep | CEO, Polygon Foundation (※,※) (@sandeepnailwal) September 17, 2025 Key Trends From the 2025 RWA Report The joint publication, titled “RWA REPORT 2025,” offers a comprehensive look into the tokenized asset landscape, which it states has grown 224% since the start of 2024. The report identifies several key trends driving this expansion. According to…
Share
BitcoinEthereumNews2025/09/18 00:40