Opens with a 3 AM failure in a “fully autonomous” deployment to show why agentic AI is hard in practice Clarifies the difference between reactive generative AIOpens with a 3 AM failure in a “fully autonomous” deployment to show why agentic AI is hard in practice Clarifies the difference between reactive generative AI

From Generative AI to Agentic AI: A Reality Check

2025/12/15 17:35

:::info This is the first article in a five-part series on agentic AI in the enterprise.

:::

\ The 3 AM Reality Check: It’s 3 AM in a global bank’s operations centre. Six months ago we deployed our first "agentic AI” system, hoping it would run on autopilot through the night. The demo was slick: an AI agent handling support tickets end-to-end, and optimism was high. But now, in the dead of night, that same agent has stalled on a critical task, and a human on-call engineer is scrambling to intervene. This scene captures the sobering reality many early adopters have faced. Agentic AI isn’t magic; it’s hard work to implement well. I learned this first-hand when our much-vaunted autonomous agent frustrated users and even forced us to roll back to manual processes in cases where it failed. We weren’t alone -plenty of companies rushed into “AI agents” only to struggle integrating them into real workflows, sometimes even rehiring staff when the AI fell short. Yet despite these 3 AM wake-up calls, I remain optimistic. Over the past year, I’ve seen enterprise teams evolve from chasing sci-fi dreams to focusing on pragmatic deployments that do deliver value.

\

\ In this series, we’ll explore how to turn that optimism into results. We’ll blend candid lessons from the trenches with a detailed breakdown of architectures, maturity stages, and risk checklists to chart a realistic path for agentic AI in business. The goal is to help you achieve real ROI from autonomous AI systems, knowing what to do, what to avoid, and where the big wins (and faceplants) tend to occur in practice. In this first part, let’s define what agentic AI actually means in contrast to the generative AI craze, and why this distinction matters for enterprises.

\ Generative AI vs. Agentic AI: Most of today’s popular AI apps (ChatGPT, Bard, Microsoft 365 Copilot, etc.) are generative AI systems. They take an input (a prompt or query) and produce an output (text, code, image…). They’re essentially powerful prediction engines: great at generating content, but lacking true autonomy. As Gartner bluntly puts it, current chatbots “do not have the agency to make plans and take action… they respond to user prompts by predicting the most common combination of words” - in other words, they are not examples of agentic AI (https://www.gartner.com/en/articles/intelligent-agent-in-ai). A generative AI might draft an email or answer a question when asked, but it won’t act unprompted or pursue goals on its own. It’s like a clever assistant that waits for instructions.

\ By contrast, agentic AI has a built-in decision loop. An agentic system can be given a high-level goal and will proactively devise and execute a multi-step plan to achieve it, with minimal human guidance. Think of a generative AI assistant as a talented intern: it writes or suggests content when you ask, whereas an agentic AI is more like a proactive team member who can be delegated an outcome and will figure out how to deliver it. A fully realised intelligent agent observes its context (through data feeds, sensors, or system APIs), plans a course of action, acts by calling tools or triggering processes, then observes the results and reflects on what to do next. In essence, it operates in a continuous “Plan - Act - Observe - Reflect” cycle until the goal is achieved or time runs out. This closed-loop autonomy is what differentiates agentic AI from a mere chatbot. A simple way to put it: generative AI answers; agentic AI accomplishes.

\ For example, instead of just generating a monthly report when prompted, an agentic AI could be told “Ensure our website is always up-to-date with the latest product info.” It would proactively monitor relevant data sources, detect when product details change, and then update the website content automatically - all without waiting for a human prompt. It would plan the necessary steps (check database - detect changes - generate updated text - call website API to publish content), execute them, observe if the update succeeded, and adjust if needed. That kind of end-to-end autonomy is nascent but starting to emerge in enterprise pilots. Of course, full autonomy remains an aspirational ideal. Today’s agentic systems still have plenty of constraints and often operate under human oversight (human-in-the-loop) or with fail-safes. In fact, many so-called “AI agents” on the market are really just glorified chatbots with a few scripted actions. True agentic AI is still in its early days, and deploying it is as much about organisational change as it is about technology. Companies are learning to manage the risks of giving AI more agency through sandboxed environments, approval gates for certain actions, and other safeguards before they fully let these digital colleagues loose.

\

\ The rest of this article series will delve into how enterprises are approaching this evolution in practice, distinguishing hype from reality, and moving step by step from assistive tools to truly autonomous agents. Before we dive into architectures and deployment strategies, it’s useful to understand how ready the industry really is. The hype around “AI agents” peaked rapidly, but on the ground, most organisations are still at the start of this journey. Gartner, for instance, predicts that over 40% of agentic AI projects will be cancelled by 2027 due to escalating costs, unclear business value or inadequate risk controls (https://www.gartner.com/en/newsroom/press-releases/2025-06-25-gartner-predicts-over-40-percent-of-agentic-ai-projects-will-be-canceled-by-end-of-2027). In a January 2025 Gartner survey, only 19% of organisations said they had made significant investments in agentic AI, while over half were taking a cautious or wait-and-see approach. The message: we’re in early days, and many early projects have struggled to move beyond proofs-of-concept.

\ So, if you’re feeling behind the curve - don’t worry, you’re not alone. The key is to cut through the hype and approach agentic AI with eyes wide open. In the next part, we’ll map out the typical maturity phases enterprises go through on the road from basic automation to true autonomy. Understanding these “crawl, walk, run, fly” stages will help you gauge where you are now and how to advance safely.

Market Opportunity
Sleepless AI Logo
Sleepless AI Price(AI)
$0.03694
$0.03694$0.03694
-1.17%
USD
Sleepless AI (AI) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

US SEC approves options tied to Grayscale Digital Large Cap Fund and Cboe Bitcoin US ETF Index

US SEC approves options tied to Grayscale Digital Large Cap Fund and Cboe Bitcoin US ETF Index

PANews reported on September 18th that the U.S. Securities and Exchange Commission (SEC) announced that, in addition to approving universal listing standards for commodity-based trust units , the SEC has also approved the listing and trading of the Grayscale Digital Large Cap Fund, which holds spot digital assets based on the CoinDesk 5 index. The SEC also approved the listing and trading of PM-settled options on the Cboe Bitcoin US ETF Index and the Mini-Cboe Bitcoin US ETF Index, with expiration dates including third Fridays, non-standard expiration dates, and quarterly index expiration dates.
Share
PANews2025/09/18 07:18
Son of filmmaker Rob Reiner charged with homicide for death of his parents

Son of filmmaker Rob Reiner charged with homicide for death of his parents

FILE PHOTO: Rob Reiner, director of "The Princess Bride," arrives for a special 25th anniversary viewing of the film during the New York Film Festival in New York
Share
Rappler2025/12/16 09:59
3 Shiba Inu Alternatives Crypto Millionaires Are Silently Accumulating in 2025

3 Shiba Inu Alternatives Crypto Millionaires Are Silently Accumulating in 2025

The post 3 Shiba Inu Alternatives Crypto Millionaires Are Silently Accumulating in 2025 appeared on BitcoinEthereumNews.com. Despite its meteoric rise in 2021, Shiba Inu (SHIB) has matured into a large‑cap meme coin with limited room for outsized returns. According to market data, SHIB traded around $0.00001293 on September 20 , 2025, and had a market capitalization of roughly $7.62 billion. With over 589 trillion tokens in circulation and trading volumes in the hundreds of millions, SHIB offers stability but lacks the explosive upside that early adopters crave. As a result, crypto millionaires are quietly rotating capital into smaller, high‑potential projects. Three of the most widely accumulated alternatives are Little Pepe (LILPEPE), Bonk (BONK), and Sui (SUI)—tokens that pair innovative technology or strong community dynamics with significantly lower valuations. Little Pepe (LILPEPE): A presale‑backed memecoin with real infrastructure Little Pepe made headlines in September 2025 when it completed the twelfth stage of its presale, having raised over $25.48 million and distributed more than 15.75 billion tokens. The project immediately moved to stage 13 at a token price of $0.0022, marking a 120 percent increase from the first presale stage. Participants expect further upside because the confirmed listing price is $0.003, implying a 30% gain for Stage-13 buyers. Little Pepe isn’t just another meme coin; it operates on a purpose-built Layer 2 network designed to deliver high-speed, low-cost transactions. The project integrates launchpad functionality for new tokens and includes anti-sniper protection to ensure fair trading. A Certik audit and other independent reviews reinforce its security credentials. This mix of infrastructure and meme culture appeal has attracted significant presale investments—an early signal that influential investors expect LILPEPE to outgrow its current small market capitalization. Bonk, launched on Christmas 2022 as a holiday airdrop to the Solana community, has become Solana’s “main dog‑themed memecoin”. It has embedded itself in the Solana DeFi ecosystem and now counts nearly 983,000 holders. Real‑time data show…
Share
BitcoinEthereumNews2025/09/29 05:19