This section formulates the UAV‑CRN rate maximization problem and proposes a BCD‑SCA algorithm, decomposing it into convex subproblems with proven convergence.This section formulates the UAV‑CRN rate maximization problem and proposes a BCD‑SCA algorithm, decomposing it into convex subproblems with proven convergence.

BCD‑SCA Based Optimization for UAV‑CRN: Joint Trajectory, Power, and Scheduling Design

2025/08/25 03:36

Abstract and I. Introduction

II. System Model

III. Problem Formulation

IV. Proposed Algorithm for Problem P0

V. Numerical Results

VI. Conclusion

APPENDIX A: PROOF OF LEMMA 1 and References

II. SYSTEM MODEL

\ The channel coefficient between B and X in the nth time slot is expressed a

\

\

\ The horizontal energy consumption of B is expressed as [14]

\

\ The energy consumption of B in the vertical direction is as expressed as [24], [39]

\

\ Fig. 2: The comparison among different schemes.

\ The average rate of the considered system is expressed as

\

\

III. PROBLEM FORMULATION

In this work, the average rate of the system is optimized, which is related to user scheduling, the transmission power and 3D trajectory, the horizontal and vertical velocities of B. Then the following optimization problem is formulated

\ \

\ \ \

\ \ \

\

IV. PROPOSED ALGORITHM FOR PROBLEM P0

To solve P0, we utilize the BCD technology to decompose the original problem into multiple subproblems. Specifically, for the given other variables, A, P, H, and Q are optimized in each subproblem respectively. In addition, the SCA technology is utilized to transform the non-convex constraints into convex constraints.

\ A. Subproblem 1: Optimizing User Scheduling Variable

\ \

\ \ \

\ \ B. Subproblem 2: Optimizing Transmit Power of B

\ \

\ \ C. Subproblem 3: Optimizing Horizontal Trajectory and Velocity of B

\ In this subsection, the horizontal trajectory and velocity of B is optimized for provided {A,P,H}. The original optimization problem is rewritten as

\ \

\ \ \

\ \ \

\ \ \

\ \ \

\ \ To address the non-convexity in (19a), Lemma 1 is introduced.

\ \

\ \ \

\ \ D. Subproblem 4: Optimizing Horizontal Trajectory and Velocity of B

\ In this subsection, for given {A,P,Q}, the vertical trajectory H of B is optimized. The optimization problem is expressed as

\ \

\ \ With the same method as (13b), (23b) is reformulated as (19a)-(19d) and (1a) and (1b) are reformulated as (16c), (16e), and (19c). With the same method in Subproblem 3, (9) in this subsection is reformulated as (16a)-(16f) wherein (16b) and (16d) are reformulated as (18a) and (18b), respectively.

\ \

\ \ \

\ \ P4.2 is a convex optimization problem that can be solved using existing optimization tools such as CVX.

\ E. Convergence Analysis of Algorithm 1

\ \

\ \ The obtained suboptimal solution of the transformed subproblem is also the suboptimal solution of the original nonconvex subproblem, and each subproblem is solved using SCA convex transformation iteration. Finally, all suboptimal solutions of the subproblems that satisfy the threshold ε constitute the suboptimal solution of the original problem. Therefore, our algorithm is to alternately solve the subproblem P1.1, P2.1, P3.2 and P4.2 to obtain the suboptimal solution of the original problem until a solution that satisfies the threshold ε is obtained.

\ It is worth noting that in the classic BCD, to ensure the convergence of the algorithm, it is necessary to accurately solve and update the subproblems of each variable block with optimality in each iteration. But when we solve P3.1 and P4.1 , we can only optimally solve their approximation problem P3.2 and P4.2. Therefore, we cannot directly apply the convergence analysis of the classical BCD, and further proof of the convergence of Algorithm 1 is needed, as shown below.

\ \

\ \ \

\ \ (30) This is similar to the representation in (29), and from (27) to (30), we obtain

\ 1 . (31) The above analysis indicates that the target value of P0 does not decrease after each iteration of Algorithm 1. Due to the objective value of P0 is a finite upper bound, therefore the proposed Algorithm 1 ensures convergence. The simulation results in the next section indicate that the proposed BCDbased method converges rapidly for the setting we are considering. In addition, since only convex optimization problems need to be solved in each iteration of Algorithm 1, which have polynomial complexity, Algorithm 1 can actually converge

\ \ Fig. 3: The average rate and user scheduling.

\ \ \ Fig. 4: 3D trajectories of B under different schemes and scenarios.

\ \ quickly for wireless networks with a moderate number of users.

\ \

\

:::info Authors:

(1) Hongjiang Lei, School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China ([email protected]);

(2) Xiaqiu Wu, School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China ([email protected]);

(3) Ki-Hong Park, CEMSE Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia ([email protected]);

(4) Gaofeng Pan, School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100081, China ([email protected]).

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

The Best Cranberry-Orange Nut Bread (and It Doesn’t Need A Glaze)

The Best Cranberry-Orange Nut Bread (and It Doesn’t Need A Glaze)

The post The Best Cranberry-Orange Nut Bread (and It Doesn’t Need A Glaze) appeared on BitcoinEthereumNews.com. This festive colorful loaf of cranberry, orange and pecans will delight your friends and family either at home or as a gift. Elizabeth Karmel This time of year, cranberry and orange go together like peanut butter and jelly. It is a classic combination so perfect, it’s practically its own flavor. I’ve always loved the bright, tart combination of cranberry and orange, but most of the cranberry-orange loaves (I’ve tried) miss the mark. Too often, they’re dry and one-dimensional, relying on a sugary glaze for flavor. Last year, I decided to see if I could fix that. I set out to create a version of this popular loaf that would be moist and tender with bursts of tangy cranberry tempered by just enough sweetness and fragrant citrus—and delicious enough to stand on its own without a glaze. I experimented with chopping the cranberries, but ultimately preferred leaving them whole. I love the look of pockets of bright red from whole cranberries and the sharp burst of tart flavor. The liquid in the recipe is mostly fresh-squeezed orange juice. I top off the fresh juice with half and half to soften the acidity, and add a little extra moisture to the crumb. For extra citrus flavor, the zest of those same oranges is rubbed into the sugar to maximize the fragrant oil (from the zest). I often use clementines or mandarins when they are in season because I find them to be even more flavorful. The reverse creaming method calls for butter to be cut into the dry ingredients a.k.a. flour-sugar mixture until it is evenly disbursed and resembles fine sand. Elizabeth Karmel To insure that the loaf bakes tender and moist, I used the reverse creaming method—an easy, foolproof technique that’s less fuss than traditional creaming. Instead of beating butter and…
Share
BitcoinEthereumNews2025/11/18 19:40
Aave DAO to Shut Down 50% of L2s While Doubling Down on GHO

Aave DAO to Shut Down 50% of L2s While Doubling Down on GHO

The post Aave DAO to Shut Down 50% of L2s While Doubling Down on GHO appeared on BitcoinEthereumNews.com. Aave DAO is gearing up for a significant overhaul by shutting down over 50% of underperforming L2 instances. It is also restructuring its governance framework and deploying over $100 million to boost GHO. This could be a pivotal moment that propels Aave back to the forefront of on-chain lending or sparks unprecedented controversy within the DeFi community. Sponsored Sponsored ACI Proposes Shutting Down 50% of L2s The “State of the Union” report by the Aave Chan Initiative (ACI) paints a candid picture. After a turbulent period in the DeFi market and internal challenges, Aave (AAVE) now leads in key metrics: TVL, revenue, market share, and borrowing volume. Aave’s annual revenue of $130 million surpasses the combined cash reserves of its competitors. Tokenomics improvements and the AAVE token buyback program have also contributed to the ecosystem’s growth. Aave global metrics. Source: Aave However, the ACI’s report also highlights several pain points. First, regarding the Layer-2 (L2) strategy. While Aave’s L2 strategy was once a key driver of success, it is no longer fit for purpose. Over half of Aave’s instances on L2s and alt-L1s are not economically viable. Based on year-to-date data, over 86.6% of Aave’s revenue comes from the mainnet, indicating that everything else is a side quest. On this basis, ACI proposes closing underperforming networks. The DAO should invest in key networks with significant differentiators. Second, ACI is pushing for a complete overhaul of the “friendly fork” framework, as most have been unimpressive regarding TVL and revenue. In some cases, attackers have exploited them to Aave’s detriment, as seen with Spark. Sponsored Sponsored “The friendly fork model had a good intention but bad execution where the DAO was too friendly towards these forks, allowing the DAO only little upside,” the report states. Third, the instance model, once a smart…
Share
BitcoinEthereumNews2025/09/18 02:28