This section reviews literature related to Instance-Incremental Learning (IIL), contrasting it with the more explored Class-Incremental LearningThis section reviews literature related to Instance-Incremental Learning (IIL), contrasting it with the more explored Class-Incremental Learning

Incremental Learning: Comparing Methods for Catastrophic Forgetting and Model Promotion

2025/11/05 02:00

Abstract and 1 Introduction

  1. Related works

  2. Problem setting

  3. Methodology

    4.1. Decision boundary-aware distillation

    4.2. Knowledge consolidation

  4. Experimental results and 5.1. Experiment Setup

    5.2. Comparison with SOTA methods

    5.3. Ablation study

  5. Conclusion and future work and References

    \

Supplementary Material

  1. Details of the theoretical analysis on KCEMA mechanism in IIL
  2. Algorithm overview
  3. Dataset details
  4. Implementation details
  5. Visualization of dusted input images
  6. More experimental results

2. Related works

This paper devotes to the instance-incremental learning which is an associated topic to the CIL but seldom investigated. In the following, related topics on class-incremental learning, continual domain adaptation, and methods based on knowledge distillation (KD) are introduced.

\ Class-incremental learning. CIL is proposed to learn new classes without suffering from the notorious catastrophic forgetting problem and is the main topic that most of works focused on in this area. Methods of CIL can be categorized into three types: 1) important weights regularization [1, 10, 19, 32], which constrains the important weights for old tasks and free those unimportant weights for new task. Freezing the weights limits the ability to learn from new data and always lead to a inferior performance on new classes. 2) Rehearsal or pseudo rehearsal method, which stores a small-size of typical exemplars [2, 4, 9, 22] or relies on a generation network to produce old data [23] for old knowledge retaining. Usually, these methods utilize knowledge distillation and perform over the weight regularization method. Although the prototypes of old classes are efficacy in preserving knowledge, they are unable to promote the model’s performance on hard samples, which is always a problem in real deployment. 3) Dynamic network architecture based method [8, 15, 30, 31], which adaptively expenses the network each time for new knowledge learning. However, deploying a changing neural model in real scenarios is troublesome, especially when it goes too big. Although most CIL methods have strong ability in learning new classes, few of them can be directly utilized in the new IIL setting in our test. The reason is that performance promotion on old classes is less emphasized in CIL.

\ Knowledge distillation-based incremental learning. Most of existing incremental learning works utilize knowledge distillation (KD) to mitigate catastrophic forgetting. LwF [12] is one of the earliest approaches that constrains the prediction of new data through KD. iCarl [22] and many other methods distill knowledge on preserved exemplars to free the learning capability on new data. Zhai et al. [33] and Zhang et al. [34] exploit distillation with augmented data and unlabeled auxiliary data at negligible cost. Different from above distillation at label level, Kang et al. [9] and Douillard [4] proposed to distill knowledge at feature level for CIL. Compared to the aforementioned researches, the proposed decision boundary-aware distillation requires no access to old exemplars and is simple but effective in learning new as well as retaining the old knowledge.

\ Comparison with the CDA and ISL. Rencently, some work of continual domain adptation (CDA) [7, 21, 27] and incremental subpopulation learning (ISL) [13] is proposed and has high similarity with the IIL setting. All of the three settings have a fixed label space. The CDA focus on solving the visual domain variations such as illumination and background. ISL is a specific case of CDA and pays more attention to the subcategories within a class, such as Poodles and Terriers. Compared to them, IIL is a more general setting where the concept drift is not limited to the domain shift in CDA or subpopulation shifting problem in ISL. More importantly, the new IIL not only aims to retain the performance but also has to promote the generalization with several new observations in the whole data space.

\

:::info Authors:

(1) Qiang Nie, Hong Kong University of Science and Technology (Guangzhou);

(2) Weifu Fu, Tencent Youtu Lab;

(3) Yuhuan Lin, Tencent Youtu Lab;

(4) Jialin Li, Tencent Youtu Lab;

(5) Yifeng Zhou, Tencent Youtu Lab;

(6) Yong Liu, Tencent Youtu Lab;

(7) Qiang Nie, Hong Kong University of Science and Technology (Guangzhou);

(8) Chengjie Wang, Tencent Youtu Lab.

:::


:::info This paper is available on arxiv under CC BY-NC-ND 4.0 Deed (Attribution-Noncommercial-Noderivs 4.0 International) license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.
Share Insights

You May Also Like

Franklin Templeton updates XRP ETF filing for imminent launch

Franklin Templeton updates XRP ETF filing for imminent launch

Franklin Templeton, one of the world’s largest asset management firms, has taken a significant step in introducing the Spot XRP Exchange-Traded Fund (ETF). The company submitted an updated S-1 registration statement to the U.S. Securities and Exchange Commission (SEC) last week, removing language that likely stood in the way of approval. The change is indicative of a strong commitment to completing the fund sale in short order — as soon as this month. The amendment is primarily designed to eliminate the “8(a)” delay clause, a technological artifact of ETF filings under which the SEC can prevent the effectiveness of a registration statement from taking effect automatically until it affirmatively approves it. By deleting this provision, Franklin Templeton secures the right to render effective the filing of the Registration Statement automatically upon fulfillment of all other conditions. This development positions Franklin Templeton as one of the most ambitious asset managers to file for a crypto ETF amid the current market flow. It replicates an approach that Bitcoin and Ethereum ETF issuers previously adopted, expediting approvals and listings when the 8(a) clause was removed. The timing of this change is crucial. Analysts say it betrays a confidence that the SEC will not register additional complaints against XRP-related products — especially as the market continues to mature and regulatory infrastructures around crypto ETFs take clearer shape. For Franklin Templeton, which manages assets worth more than $1 trillion globally, an XRP ETF would be a significant addition to its cryptocurrency investment offerings. The firm already offers exposure to Bitcoin and Ethereum through similar products, indicating an increasing confidence in digital assets as an emerging investment asset class. Other asset managers race to launch XRP ETFs Franklin Templeton isn’t the only one seeking to launch an XRP ETF. Other asset managers, such as Canary Funds and Bitwise, have also revised their S-1 filings in recent weeks. Canary Funds has withdrawn its operating company’s delaying amendment and is seeking to go live in mid-November, subject to exchange approval. Bitwise, another major player in digital asset management, announced that it would list an XRP ETF on a prominent U.S. exchange. The company has already made public fees and custodial arrangements — the last steps generally completed when an ETF is on the verge of a launch. The surge in amended filings indicates growing industry optimism that the SEC may approve several XRP ETFs for marketing around the same time. For investors, this would provide new, regulated access to one of the world’s most widely traded cryptocurrencies, without the need to hold a token directly. Investors prepare for ripple effect on markets The competition to offer an XRP ETF demonstrates the next step toward institutional involvement in digital assets. If approved, these funds would provide investors with a straightforward, regulated way to gain token access to XRP price movements through traditional brokerages. An XRP ETF could also onboard new retail investors and boost the liquidity and trust of the asset, similarly to what spot Bitcoin ETFs achieved earlier this year. Those funds attracted billions of dollars in inflows within a matter of weeks, a subtle indication of the pent-up demand among institutional and retail investors. The SEC, which has become more receptive to digital-asset ETFs after approving products including Bitcoin and Ethereum, is still carefully weighing every filing. Final approval will be based on full disclosure, custody, and transparency of how pricing is happening through the base market. Still, market participants view the update in Franklin Templeton’s filing as their strongest sign yet that they are poised. With a swift response from the firm and news of other competing funds, this should mean that we don’t have long to wait for the first XRP ETF — marking another key turning point in crypto’s journey into traditional finance. If you're reading this, you’re already ahead. Stay there with our newsletter.
Share
Coinstats2025/11/05 09:16